AI2 Research Laboratory

AI2 stands for Artificial intelligence (A), Interactive (I), Augmented (A), and Immersive (I) learning environments. AI2 represents the innovative learning environments we pursue to advance more adaptable, engaged, equitable, and effective teaching and learning in various educational contexts. We build on the legacy of our understanding of how people learn to answer the question, how we can scaffold people to learn better. Our endeavor to promote AI2 learning is driven by our belief that most learners can achieve learning goals if provided with appropriate instructional support.

News@AI2 RL

AI2 Research Lab Spring Feast

AI2 Research Lab Spring Feast

March 24, 2025

We gathered at Dr. Min Kyu Kim's home for our spring semester feast during the spring break on March 18th! It was a warm and lively gathering, not only with our lab members but also with other professors we know!

.. Read More

AI-ALOE's Spring Retreat

AI-ALOE's Spring Retreat

March 14, 2025

Our SMART team at AI-ALOE (Dr. Min Kyu Kim, Jinho Kim, and Yoojin Bae), along with other AI2RL members (Hyunkyu Han and Seora Kim), attended AI-ALOE's Spring Retreat on March 6-7 at the Coda Building, Georgia Tech. This year’s retreat saw the highest participation yet, with approximately 40 attendees joining either in person or virtually. During the meeting, our graduate associates Jinho and Yoojin had their presentations.

.. Read More

Presentations at the AI-ALOE Foundational and Use-Inspired AI Meetings

Presentations at the AI-ALOE Foundational and Use-Inspired AI Meetings

March 1, 2025

Our SMART team at AI-ALOE (Dr. Min Kyu Kim, Jinho Kim, and Yoojin Bae) presented at the biweekly Foundational and Use-Inspired AI meetings on February 24. During our presentation, we shared key aspects of SMART's design, starting with its overarching goal and our approach, which incorporates a whole-person perspective.

.. Read More

See more >

Research Projects

NSF IUSE-Engaged Student Learning (Level 1): AI-Scaffolded Pre-Classroom Learning for Large/Introductory Undergraduate Physics Courses

NSF IUSE-Engaged Student Learning (Level 1): AI-Scaffolded Pre-Classroom Learning for Large/Introductory Undergraduate Physics Courses

This Engaged Student Learning Level 1 project aims to serve the national interest by designing and implementing an Artificial Intelligence (AI)-augmented formative assessment and feedback system. This system will help students develop source-based STEM arguments, such as STEM text summarization, or problem spaces, which are mental representations of a problem and of multiple paths to solving it. This will be implemented in large, undergraduate introductory physics courses at an urban university that serves diverse and historically underrepresented student groups. Persistent learner engagement in pre-classroom learning activities is critical to learner success in introductory STEM courses. The innovation of the project will include AI-generated adaptive scaffolding information and learning progress feedback with data visualization techniques to help students with concept learning and self-regulatory behaviors. The unique learning opportunities supported by an AI-scaffolded feedback system will significantly increase students' engagement levels in self-paced online pre-classroom learning. This, in turn, will help students acquire content knowledge and build a proper understanding of problems to prepare themselves for success in in-classroom interactive problem-solving activities.

NSF AI Institute: AI Institute for Adult Learning and Online Education (ALOE) (Grant/Award Number: 2112532), National Science Foundation.

NSF AI Institute: AI Institute for Adult Learning and Online Education (ALOE) (Grant/Award Number: 2112532), National Science Foundation.

The ALOE institute is led by the Georgia Research Alliance (GRA), headquartered at Georgia Tech. The interdisciplinary and cross-institutional effort unites experts in computer science, artificial intelligence (AI), cognitive science, learning science and education from two Non-Profit Organizations (GRA and IMI Global), three industry partners (IBM, Boeing and Wiley) and seven universities (Georgia Tech, Georgia State, Harvard, Arizona State, Drexel, University of North Carolina, and multiple colleges within the Technical College System of Georgia [TCSG]). The multinational company Accenture joins NSF as a funding partner of ALOE.

The 5-year NSF grant is to establish the NSF AI Institute for Adult Learning and Online Education (ALOE) that will develop new AI theories and techniques as well as new models of lifelong learning, and evaluate their effectiveness at Georgia Tech, Georgia State, multiple colleges within the Technical College System of Georgia (TCSG), as well as with corporate partners IBM, Boeing and Wiley. ALOE aims to integrate AI theories, models, and techniques into online adult learning to create more available, affordable, adaptable, and scalable learning experiences, which creates more effective and efficient teaching and learning.

Artificial Intelligence-Augmented Motivation Indicator (AIMI) System

Artificial Intelligence-Augmented Motivation Indicator (AIMI) System

AIMI is an AI-augmented system that detects learners’ real-time motivation levels. AIMI utilizes neural network algorithms that interpret student facial expressions to indicate students’ current emotions (i.e., anger, disgust, fear, happiness, sadness, surprise, and neutral) and motivation levels in real-time.

See more >

Publications

Haddadian, G., Radmanesh, S., & Haddadian, N. (2024). Construction and validation of a Computerized Formative Assessment Literacy (CFAL) questionnaire for language teachers: An exploratory sequential mixed-methods investigation. Language Testing in Asia, 14(33). https://doi.org/10.1186/s40468-024-00303-2

Kim, M. K., Kim, J., & Heidari, A. (2024). Exploring the multi-dimensional human mind: Model-based and text-based approaches. Assessing Writing, 61, 100878. https://doi.org/10.1016/j.asw.2024.100878

Haddadian, G. & Haddadian, N. (2024). Innovative use of grammarly feedback for improving EFL learners’ speaking: Learners’ perceptions and transformative engagement experiences in focus. The Journal of Applied Instructional Design, 13(2). 

See more >